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MobEes oF CONVERGENCE

If one has a sequence of complex numbers (x,),en, it is unambiguous what it means for that sequence to converge to
a limit x € R. More generally, if we have a sequence (v,),y 0f d-dimensional vectors in a real vector space R”, it is clear
what it means for a sequence to converge to a limit. We usually consider convergence with respect to the Euclidean norm,
but for the purposes of convergence, these norms are all equivalent.

If, however, one has a sequence of real-valued functions (f,),en 0n a common domain Q and a perceived limit f, there
can now be many different ways how f,, may or may not converge to f. Since the function spaces we consider are infinite
dimensional, the functions f, have an infinite number of degrees of freedom, and this allows them to approach f in any
number of inequivalent ways. We now introduce different convergence concepts for sequences of measurable functions
and then compare them to each other.

Definition 1: Modes of Convergence. Let (f,),ey and f : Q — R be measurable functions. We say that (f,) converges to f:

(1) p-almost everywhere (u-a.e.) if there is a measurable set N with u(IN) = 0 such that lim,_, f,,(x) = f(x) for all
x e N¢. We write f, — f p-a.e..

(2) in measure y if for all € > 0, lim,, ., p({x € Q : |[f(x) — f,(x)| > €}) = 0. We write f,, L f.

(3) in LXQ, 1) if limy oo 1 = Fllziagn = iMoo foy | o = F1dp = 0. We write £, 25 f.

The L' mode of convergence is a special case of the L” mode of convergence. One particular advantage of L' convergence
is that, in the case when the f, are u-summable, it implies convergence of the integrals [, f,du — [, fdu. This follows
directly by the triangle inequality, i.e., | [, fndp— Jo fdpl < [, fn — Fldp.

Proposition 2: Simple Implications. Convergence in L(Q, ) implies convergence in measure u. Moreover, if u(Q) < oo,
then convergence p-a.e. implies convergence in measure p too.

Proof. By replacing f, with f, — f, we can assume that f = 0 without loss of generality.

(1) Recall Chebyshev’s inequality, which states that for every p-summable f : Q — R, we have u(fx € Q: |f(x)| > a) <
1 [oIfldp for all @ > 0. It follows that for all € > 0, pu({x € Q: |f,l > €} < L [, 1fuldp = 21If,llz:. Therefore, L'(Q, p)-
convergence implies convergence in measure.

(2) From Egorov’s theorem, it follows that for every 6 > 0, there exists Fs c Q measurable with p(Q\F;) < § such
that (f,,), converges uniformly to f on F;s. In other words, for any € > 0, there exists N =0, any n > N, we have
SUpP,er, |fn(X) = f(x)| <e. Forn =N, {x € Q:|f,(x) - f(x)| > e} € Q\Fs. Hence u({x € Q: |f,(x) - f(x)| > €}) < p(Q\F5) < 6.
Since 6 > 0 was arbitrary, we can conclude.

(3) Alternatively, the latter can be proven by applying the dominated convergence theorem (DCT) to the integral of
Tyf,-f1>e» which is dominated by 1 on a finite measure space.

Date: 2025 4£8 H 1 H.



2

Examples. All other implications between different convergence concepts are not true in general.

» A.e. convergence does not imply in-measure convergence on spaces with infinite measure: The sequence f, =
lin.n+11 Shows that the finiteness assumption in Proposition 2 is necessary. The sequence converges to 0 pointwise
(and thus p-a.e.), but it does not converge in measure.

« A.e. convergence does not imply L' convergence: Let Q =[0,1] and A be the Lebesgue measure. The sequence
fu :=nlg 1), n €N, converges to 0 pointwise, hence also A-a.e.. It also converges in measure because we are on a
finite measure space. However, JfndA=1,so (f,) does not converge to 0 in LY([0,11, ).

L' convergence does not imply a.e. convergence: For n e Nand & = 1,...,2", define fo;, := ljz-12» z2--1. Renumber-
ing this double sequence to a single sequence (g, )men, We have [ f,.dA =2"" and hence g,, — 0 in L' as m — oo.
The sequence also converges to 0 in measure. However, limsup,,_..,&» = 1 and liminf,, ., g,, = 0 show that (g,,)
does not converge to 0 p-a.e. Intuitively, this is a sequence of indicator functions of intervals of decreasing length,

marching across the unit interval over and over again. This sequence is also known as the typewriter sequence.

Example 2 shows that convergence in measure is a strictly weaker notion, as it is not implied by a.e. or L' convergence.
Convergence p-a.e. and convergence in L'(Q, u) do not seem to be related in general.

The dominated convergence theorem of Lebesgue states that p-a.e. convergence together with the existence of a
p-summable bound for a sequence of measurable functions imply convergence in L'(Q,u). These conditions are only
sufficient, but not necessary. Thus it is of interest to look for an even sharper result.

Example 3. Let O =[0,1] and consider the Lebesgue measure A. We define the functions

n

In = g

H(O,l] Vn=1.

Then we have f,, — 0 pointwise and hence also 1-a.e. Moreover

1
LdA= -0
f[o,u f log(n)

so that f,, — 0 in L([0,1], 1) since f, = 0. However, there exists no A-summable function g with g = f,, A-a.e. for all n.

Indeed, such a g would have to satisfy g = it~ 1-a.e. on (0, 1] for all n. But then
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[o,ug(m’%l “logn)\n n+1) (n+1logn)

and hence
(o) [ee] 1
[0,1] n=1J00,1] "

= nlog(n) -

Definition 3: Uniform Summability The family (f,,),en is called uniformly p-summable if for all € > 0 there exists § > 0
such that for all n e N and A = Q y-measurable with u(A) < § it holds

f Ifaldu<e.
A

This allows us to formulate a necessary and sufficient condition for L' convergence.

Vitali Convergence Theorem. The Lebesgue dominated convergence theorem states that p-a.e. convergence together
with the existence of a y-summable bound imply convergence in L*(€, u). These conditions are sufficient but not necessary.

Definition 3: Uniform Summability. The family (f,),en is called uniformly p-summable if for all € > 0 there exists § > 0 such
that for all n e N and A < Q p-measurable with u(A) < §, it holds that [, |f,|du <e. This allows us to formulate a necessary

and sulfficient condition for L' convergence.



Theorem 4: Vitali Convergence Theorem. If p(€2) < oo, the following conditions are equivalent:

(1) fuo—fin L'Q,p).
(2) fa L £ and (fu)nen is uniformly p-summable.

L? Convergence. L'-convergence is one particular case of a more general concept called L”-convergence.

Definition 5: LP Convergence. Let p € [1,00). For f : Q — R, we define the L?(Q,u) norm by 1 lrmw = (g |f|pd'u)1% < co.
For p = oo, we define the L>(Q, u) norm by |||z~ := p-€ss sup,.q |f(x)|. A sequence of yu-measurable functions (f,),en
converges in LP(), u) to a measurable function f if lim, . [|f, = fllLr @ = 0.

Proposition 6. If u(Q) < oo, then for 1 <r <s < oo, we have L*(Q, u) c L"(Q, u). In particular, convergence in L*(Q, u) implies
convergence in L"(Q, ). To summarize, when () < oo and 1 <r < s < oo, we have the following implications: L* = L" =
L' = in measure p.
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