MODES OF CONVERGENCE

MYJ 2024-25春

红色 = 强调 蓝色 = 补充说明 紫色 = 习题

Modes of Convergence

If one has a sequence of complex numbers $(x_n)_{n\in\mathbb{N}}$, it is unambiguous what it means for that sequence to converge to a limit $x\in\mathbb{R}$. More generally, if we have a sequence $(v_n)_{n\in\mathbb{N}}$ of d-dimensional vectors in a real vector space \mathbb{R}^n , it is clear what it means for a sequence to converge to a limit. We usually consider convergence with respect to the Euclidean norm, but for the purposes of convergence, these norms are all equivalent.

If, however, one has a sequence of real-valued functions $(f_n)_{n\in\mathbb{N}}$ on a common domain Ω and a perceived limit f, there can now be many different ways how f_n may or may not converge to f. Since the function spaces we consider are infinite dimensional, the functions f_n have an infinite number of degrees of freedom, and this allows them to approach f in any number of inequivalent ways. We now introduce different convergence concepts for sequences of measurable functions and then compare them to each other.

Definition 1: Modes of Convergence. Let $(f_n)_{n\in\mathbb{N}}$ and $f:\Omega\to\overline{\mathbb{R}}$ be measurable functions. We say that (f_n) converges to f:

- (1) μ -almost everywhere (μ -a.e.) if there is a measurable set N with $\mu(N) = 0$ such that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in N^c$. We write $f_n \to f$ μ -a.e..
- (2) **in measure** μ if for all $\epsilon > 0$, $\lim_{n \to \infty} \mu(\{x \in \Omega : |f(x) f_n(x)| > \epsilon\}) = 0$. We write $f_n \stackrel{\mu}{\to} f$.
- (3) in $L^1(\Omega,\mu)$ if $\lim_{n\to\infty} ||f_n-f||_{L^1(\Omega,\mu)} := \lim_{n\to\infty} \int_{\Omega} |f_n-f| d\mu = 0$. We write $f_n \stackrel{L^1}{\longrightarrow} f$.

The L^1 mode of convergence is a special case of the L^p mode of convergence. One particular advantage of L^1 convergence is that, in the case when the f_n are μ -summable, it implies convergence of the integrals $\int_{\Omega} f_n d\mu \to \int_{\Omega} f d\mu$. This follows directly by the triangle inequality, i.e., $|\int_{\Omega} f_n d\mu - \int_{\Omega} f d\mu| \le \int_{\Omega} |f_n - f| d\mu$.

Proposition 2: Simple Implications. Convergence in $L^1(\Omega,\mu)$ implies convergence in measure μ . Moreover, if $\mu(\Omega) < \infty$, then convergence μ -a.e. implies convergence in measure μ too.

Proof. By replacing f_n with $f_n - f$, we can assume that $f \equiv 0$ without loss of generality.

- (1) Recall Chebyshev's inequality, which states that for every μ -summable $f:\Omega\to\overline{\mathbb{R}}$, we have $\mu(\{x\in\Omega:|f(x)|>\alpha)\leq\frac{1}{a}\int_{\Omega}|f|d\mu$ for all a>0. It follows that for all $\epsilon>0$, $\mu(\{x\in\Omega:|f_n|>\epsilon\})\leq\frac{1}{\epsilon}\int_{\Omega}|f_n|d\mu=\frac{1}{\epsilon}||f_n||_{L^1}$. Therefore, $L^1(\Omega,\mu)$ -convergence implies convergence in measure.
- (2) From Egorov's theorem, it follows that for every $\delta > 0$, there exists $F_{\delta} \subset \Omega$ measurable with $\mu(\Omega \setminus F_{\delta}) < \delta$ such that $(f_n)_n$ converges uniformly to f on F_{δ} . In other words, for any $\epsilon > 0$, there exists $N \geq 0$, any n > N, we have $\sup_{x \in F_{\delta}} |f_n(x) f(x)| < \epsilon$. For $n \geq N$, $\{x \in \Omega : |f_n(x) f(x)| > \epsilon\} \subset \Omega \setminus F_{\delta}$. Hence $\mu(\{x \in \Omega : |f_n(x) f(x)| > \epsilon\}) \leq \mu(\Omega \setminus F_{\delta}) < \delta$. Since $\delta > 0$ was arbitrary, we can conclude.
- (3) Alternatively, the latter can be proven by applying the dominated convergence theorem (DCT) to the integral of $\mathbb{1}_{\{|f_n-f|>e\}}$, which is dominated by 1 on a finite measure space.

Date: 2025 年 8 月 1 日.

Examples. All other implications between different convergence concepts are not true in general.

- A.e. convergence does not imply in-measure convergence on spaces with infinite measure: The sequence $f_n = \mathbb{I}_{[n,n+1]}$ shows that the finiteness assumption in Proposition 2 is necessary. The sequence converges to 0 pointwise (and thus μ -a.e.), but it does not converge in measure.
- A.e. convergence does not imply L^1 convergence: Let $\Omega = [0,1]$ and λ be the Lebesgue measure. The sequence $f_n := n\mathbb{I}_{(0,\frac{1}{n})}, n \in \mathbb{N}$, converges to 0 pointwise, hence also λ -a.e.. It also converges in measure because we are on a finite measure space. However, $\int f_n d\lambda = 1$, so (f_n) does not converge to 0 in $L^1([0,1],\lambda)$.
- L^1 convergence does not imply a.e. convergence: For $n \in \mathbb{N}$ and $k = 1, ..., 2^n$, define $f_{nk} := \mathbb{I}_{[(k-1)2^{-n}, k2^{-n}]}$. Renumbering this double sequence to a single sequence $(g_m)_{m \in \mathbb{N}}$, we have $\int f_{nk} d\lambda = 2^{-n}$ and hence $g_m \to 0$ in L^1 as $m \to \infty$. The sequence also converges to 0 in measure. However, $\limsup_{m \to \infty} g_m = 1$ and $\liminf_{m \to \infty} g_m = 0$ show that (g_m) does not converge to 0 μ -a.e. Intuitively, this is a sequence of indicator functions of intervals of decreasing length, marching across the unit interval over and over again. This sequence is also known as the *typewriter sequence*.

Example 2 shows that convergence in measure is a strictly weaker notion, as it is not implied by a.e. or L^1 convergence. Convergence μ -a.e. and convergence in $L^1(\Omega, \mu)$ do not seem to be related in general.

The dominated convergence theorem of Lebesgue states that μ -a.e. convergence together with the existence of a μ -summable bound for a sequence of measurable functions imply convergence in $L^1(\Omega,\mu)$. These conditions are only sufficient, but not necessary. Thus it is of interest to look for an even sharper result.

Example 3. Let $\Omega = [0,1]$ and consider the Lebesgue measure λ . We define the functions

$$f_n := \frac{n}{\log(n)} \mathbb{I}_{(0,\frac{1}{n}]} \quad \forall n \ge 1.$$

Then we have $f_n \to 0$ pointwise and hence also λ -a.e. Moreover

$$\int_{[0,1]} f_n d\lambda = \frac{1}{\log(n)} \to 0$$

so that $f_n \to 0$ in $L^1([0,1],\lambda)$ since $f_n \ge 0$. However, there exists no λ -summable function g with $g \ge f_n$ λ -a.e. for all n. Indeed, such a g would have to satisfy $g \ge \frac{n}{\log(n)}\lambda$ -a.e. on $(0,\frac{1}{n}]$ for all n. But then

$$\int_{[0,1]} g \mathbb{I}_{(\frac{1}{n+1},\frac{1}{n}]} d\lambda \geq \frac{n}{\log(n)} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{(n+1)\log(n)}$$

and hence

$$\int_{[0,1]} g d\lambda = \sum_{n=1}^{\infty} \int_{[0,1]} g \mathbb{I}_{(\frac{1}{n+1},\frac{1}{n}]} d\lambda \geq \sum_{n=2}^{\infty} \frac{1}{n \log(n)} = \infty.$$

Definition 3: Uniform Summability The family $(f_n)_{n\in\mathbb{N}}$ is called *uniformly μ-summable* if for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $n \in \mathbb{N}$ and $A \subset \Omega$ *μ*-measurable with $\mu(A) < \delta$ it holds

$$\int_A |f_n| d\mu < \epsilon.$$

This allows us to formulate a necessary and sufficient condition for L^1 convergence.

Vitali Convergence Theorem. The Lebesgue dominated convergence theorem states that μ -a.e. convergence together with the existence of a μ -summable bound imply convergence in $L^1(\Omega,\mu)$. These conditions are sufficient but not necessary.

Definition 3: Uniform Summability. The family $(f_n)_{n\in\mathbb{N}}$ is called uniformly μ -summable if for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $n \in \mathbb{N}$ and $A \subset \Omega$ μ -measurable with $\mu(A) < \delta$, it holds that $\int_A |f_n| d\mu < \epsilon$. This allows us to formulate a necessary and sufficient condition for L^1 convergence.

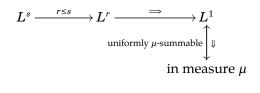
Theorem 4: Vitali Convergence Theorem. If $\mu(\Omega) < \infty$, the following conditions are equivalent:

- (1) $f_n \to f$ in $L^1(\Omega, \mu)$.
- (2) $f_n \stackrel{\mu}{\to} f$ and $(f_n)_{n \in \mathbb{N}}$ is uniformly μ -summable.

 L^p Convergence. L^1 -convergence is one particular case of a more general concept called L^p -convergence.

Definition 5: L^p Convergence. Let $p \in [1,\infty)$. For $f: \Omega \to \overline{\mathbb{R}}$, we define the $L^p(\Omega,\mu)$ norm by $||f||_{L^p(\Omega,\mu)} = (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}} \leq \infty$. For $p = \infty$, we define the $L^\infty(\Omega,\mu)$ norm by $||f||_{L^\infty(\Omega,\mu)} := \mu$ -ess $\sup_{x \in \Omega} |f(x)|$. A sequence of μ -measurable functions $(f_n)_{n \in \mathbb{N}}$ converges in $L^p(\Omega,\mu)$ to a measurable function f if $\lim_{n \to \infty} ||f_n - f||_{L^p(\Omega,\mu)} = 0$.

Proposition 6. If $\mu(\Omega) < \infty$, then for $1 \le r < s \le \infty$, we have $L^s(\Omega, \mu) \subset L^r(\Omega, \mu)$. In particular, convergence in $L^s(\Omega, \mu)$ implies convergence in $L^r(\Omega, \mu)$. To summarize, when $\mu(\Omega) < \infty$ and $1 \le r \le s \le \infty$, we have the following implications: $L^s \Rightarrow L^r \Rightarrow L^1 \Rightarrow$ in measure μ .



$$\mu$$
-a.e. \Longrightarrow in measure μ