
MODES OF CONVERGENCE

MYJ 2024-25春

红色 =强调 蓝色 =补充说明 紫色 =习题

Modes of Convergence

If one has a sequence of complex numbers (xn)n∈N, it is unambiguous what it means for that sequence to converge to
a limit x ∈ R. More generally, if we have a sequence (vn)n∈N of d-dimensional vectors in a real vector space Rn, it is clear
what it means for a sequence to converge to a limit. We usually consider convergence with respect to the Euclidean norm,
but for the purposes of convergence, these norms are all equivalent.

If, however, one has a sequence of real-valued functions ( fn)n∈N on a common domainΩ and a perceived limit f, there
can now be many different ways how fn may or may not converge to f. Since the function spaces we consider are infinite
dimensional, the functions fn have an infinite number of degrees of freedom, and this allows them to approach f in any
number of inequivalent ways. We now introduce different convergence concepts for sequences of measurable functions
and then compare them to each other.

Definition 1: Modes of Convergence. Let ( fn)n∈N and f :Ω→R be measurable functions. We say that ( fn) converges to f:

(1) µ-almost everywhere (µ-a.e.) if there is a measurable set N with µ(N) = 0 such that limn→∞ fn(x) = f (x) for all
x ∈ N c. We write fn → f µ-a.e..

(2) in measure µ if for all ϵ> 0, limn→∞µ({x ∈Ω : | f (x)− fn(x)| > ϵ})= 0. We write fn
µ−→ f .

(3) in L1(Ω,µ) if limn→∞ || fn − f ||L1(Ω,µ) := limn→∞
∫
Ω | fn − f |dµ= 0. We write fn

L1−→ f .

The L1 mode of convergence is a special case of the Lp mode of convergence. One particular advantage of L1 convergence
is that, in the case when the fn are µ-summable, it implies convergence of the integrals

∫
Ω fndµ→ ∫

Ω f dµ. This follows
directly by the triangle inequality, i.e., |∫Ω fndµ−∫

Ω f dµ| ≤ ∫
Ω | fn − f |dµ.

Proposition 2: Simple Implications. Convergence in L1(Ω,µ) implies convergence in measure µ. Moreover, if µ(Ω) <∞,
then convergence µ-a.e. implies convergence in measure µ too.

Proof. By replacing fn with fn − f , we can assume that f ≡ 0 without loss of generality.

(1) Recall Chebyshev’s inequality, which states that for every µ-summable f :Ω→ R, we have µ({x ∈Ω : | f (x)| > a) ≤
1
a

∫
Ω | f |dµ for all a > 0. It follows that for all ϵ > 0, µ({x ∈Ω : | fn| > ϵ}) ≤ 1

ϵ

∫
Ω | fn|dµ = 1

ϵ
|| fn||L1 . Therefore, L1(Ω,µ)-

convergence implies convergence in measure.
(2) From Egorov’s theorem, it follows that for every δ > 0, there exists Fδ ⊂ Ω measurable with µ(Ω\Fδ) < δ such

that ( fn)n converges uniformly to f on Fδ. In other words, for any ϵ > 0, there exists N ≥ 0, any n > N, we have
supx∈Fδ

| fn(x)− f (x)| < ϵ. For n ≥ N, {x ∈Ω : | fn(x)− f (x)| > ϵ}⊂Ω\Fδ. Hence µ({x ∈Ω : | fn(x)− f (x)| > ϵ})≤µ(Ω\Fδ)< δ.
Since δ> 0 was arbitrary, we can conclude.

(3) Alternatively, the latter can be proven by applying the dominated convergence theorem (DCT) to the integral of
1{| fn− f |>ϵ}, which is dominated by 1 on a finite measure space.
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Examples. All other implications between different convergence concepts are not true in general.

• A.e. convergence does not imply in-measure convergence on spaces with infinite measure: The sequence fn =
I[n,n+1] shows that the finiteness assumption in Proposition 2 is necessary. The sequence converges to 0 pointwise
(and thus µ-a.e.), but it does not converge in measure.

• A.e. convergence does not imply L1 convergence: Let Ω = [0,1] and λ be the Lebesgue measure. The sequence
fn := nI(0, 1

n ), n ∈ N, converges to 0 pointwise, hence also λ-a.e.. It also converges in measure because we are on a
finite measure space. However,

∫
fndλ= 1, so ( fn) does not converge to 0 in L1([0,1],λ).

• L1 convergence does not imply a.e. convergence: For n ∈N and k = 1, ...,2n, define fnk := I[(k−1)2−n ,k2−n]. Renumber-
ing this double sequence to a single sequence (gm)m∈N, we have

∫
fnkdλ= 2−n and hence gm → 0 in L1 as m →∞.

The sequence also converges to 0 in measure. However, limsupm→∞ gm = 1 and liminfm→∞ gm = 0 show that (gm)

does not converge to 0 µ-a.e. Intuitively, this is a sequence of indicator functions of intervals of decreasing length,
marching across the unit interval over and over again. This sequence is also known as the typewriter sequence.

Example 2 shows that convergence inmeasure is a strictlyweaker notion, as it is not implied by a.e. or L1 convergence.
Convergence µ-a.e. and convergence in L1(Ω,µ) do not seem to be related in general.

The dominated convergence theorem of Lebesgue states that µ-a.e. convergence together with the existence of a
µ-summable bound for a sequence of measurable functions imply convergence in L1(Ω,µ). These conditions are only
sufficient, but not necessary. Thus it is of interest to look for an even sharper result.

Example 3. Let Ω= [0,1] and consider the Lebesgue measure λ. We define the functions

fn := n
log(n)

I(0, 1
n ] ∀n ≥ 1.

Then we have fn → 0 pointwise and hence also λ-a.e. Moreover∫
[0,1]

fndλ= 1
log(n)

→ 0

so that fn → 0 in L1([0,1],λ) since fn ≥ 0. However, there exists no λ-summable function g with g ≥ fn λ-a.e. for all n.
Indeed, such a g would have to satisfy g ≥ n

log(n)λ-a.e. on (0, 1
n ] for all n. But then∫

[0,1]
gI( 1

n+1 , 1
n ]dλ≥ n

log(n)

(
1
n
− 1

n+1

)
= 1

(n+1)log(n)

and hence ∫
[0,1]

gdλ=
∞∑

n=1

∫
[0,1]

gI( 1
n+1 , 1

n ]dλ≥
∞∑

n=2

1
n log(n)

=∞.

Definition 3: Uniform Summability The family ( fn)n∈N is called uniformly µ-summable if for all ϵ> 0 there exists δ> 0

such that for all n ∈N and A ⊂Ω µ-measurable with µ(A)< δ it holds∫
A
| fn|dµ< ϵ.

This allows us to formulate a necessary and sufficient condition for L1 convergence.

Vitali Convergence Theorem. The Lebesgue dominated convergence theorem states that µ-a.e. convergence together
with the existence of a µ-summable bound imply convergence in L1(Ω,µ). These conditions are sufficient but not necessary.

Definition 3: Uniform Summability. The family ( fn)n∈N is called uniformly µ-summable if for all ϵ> 0 there exists δ> 0 such
that for all n ∈N and A ⊂Ω µ-measurable with µ(A)< δ, it holds that

∫
A | fn|dµ< ϵ. This allows us to formulate a necessary

and sufficient condition for L1 convergence.
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Theorem 4: Vitali Convergence Theorem. If µ(Ω)<∞, the following conditions are equivalent:
(1) fn → f in L1(Ω,µ).
(2) fn

µ−→ f and ( fn)n∈N is uniformly µ-summable.

Lp Convergence. L1-convergence is one particular case of a more general concept called Lp-convergence.

Definition 5: Lp Convergence. Let p ∈ [1,∞). For f : Ω→ R, we define the Lp(Ω,µ) norm by || f ||Lp(Ω,µ) = (
∫
Ω | f |pdµ)

1
p ≤ ∞.

For p =∞, we define the L∞(Ω,µ) norm by || f ||L∞(Ω,µ) := µ-ess supx∈Ω | f (x)|. A sequence of µ-measurable functions ( fn)n∈N
converges in Lp(Ω,µ) to a measurable function f if limn→∞ || fn − f ||Lp(Ω,µ) = 0.

Proposition 6. If µ(Ω)<∞, then for 1≤ r < s ≤∞, we have Ls(Ω,µ)⊂ Lr(Ω,µ). In particular, convergence in Ls(Ω,µ) implies
convergence in Lr(Ω,µ). To summarize, when µ(Ω) <∞ and 1 ≤ r ≤ s ≤∞, we have the following implications: Ls ⇒ Lr ⇒
L1 ⇒ in measure µ.

Ls r≤s // Lr =⇒ // L1

⇓
��

in measure µ

uniformly µ-summable

OO

µ-a.e. =⇒ // in measure µ
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